
An Efficient Method for Generating Discrete
Random Variables With General Distributions

ALASTAIR J. WALKER
University of Witwatersrand, South Africa

The fast generation of discrete random variables with arbitrary frequency distributions is
discussed. The proposed method is related to rejection techniques but differs from them in
that all samples comprising the input data contribute to the samples in the target distribution.
The software implementation of the method requires at most two memory references and a
comparison. The method features good accuracy and modest storage requirements. I t is par-
ticularly useful in small computers with limited memory capacity.

Key Words and Phrases" random number generation, probability, arbitrary distributions,
statistical tests
CR Categories: 3.24, 5.5

INTRODUCTION

Commonly used criteria [2, 3] for judging the performance of random number
generators include speed, precision, memory requirements, generality of the tech-
nique, and ease of implementation. The method proposed by Marsaglia [1] has all
these at tr ibutes but must be used with care in a computer with limited memory
capacity since the number of memory locations required for the storage of con-
stants appears to be an order of magnitude greater than the number of variables
to be generated. In comparison, the number of memory locations required for the
storage of constants by the method proposed in this contribution is only twice the
number of variables used. There is no restriction on the other desirable features
given above.

These principles have already been used to advantage in the design and con-
struction of a high-speed digital hardware-implemented pseudorandom number
generator with an arbi t rary discrete frequency distribution [5] and as a generator
of uniformly distributed random variables with floating point representation [4].

M~HOD

The new method is related to rejection techniques but differs from them in tha t all
numbers generated are used. A number is either accepted or replaced with an
"al ias" number.

Copyright © 1977, Association for Computing Machinery, Inc. General permission to repub-
lish, but not for profit, all or part of this material is granted provided that ACM's copyright
notice is given and that reference is made to the publication, to its date of issue, and to the
fact that reprinting privileges were granted by permission of the Association for Computing
Machinery.
Author's address: Department of Electrical Engineering, University of Witwatersrand, 1 Jan
Smuts Ave., Johannesburg 2001, South Africa.

ACM Transactions on Mathematical Software. Vol. 3, No. 3, September 1977, Pages 258-256.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355744.355749&domain=pdf&date_stamp=1977-09-01

2 5 4 • A.J. Walker

C SUBROUTINE TO COMPUTE THE ALIAS AND CUTOFF VALUES
C FOR THE DESIRED PROBABILITY DISTRIBUTION.
C ON ENTRY, ARRAY E CONTAINS ~HE DESIRED PROBABILITY
C VALUES. N IS THE NUMBER OF VARIABLES IN THE
C DISTRIBUTION.
C ON EXIT, ARRAYIS IA AND F CONTAIN THE ALIAS AND
C CUTOFF VALUES, RESPECTIVELY. ARRAY 9 CONTAINS
C THE RECONSTRUCTED PROBABILITIES.

SUBROUTINE ARBRAN(B, E, N, IA, F, P)
REAL B(N), E(N), F(N), P(N)
INTEGER IA(N)
ERROR = .IE-5
AN = FLOAT(N)

C INITIALISE ARRAYIS IA,F,B
DO 10 I=I,N

IA (I) = I
F(I) = o.0
B (I) = E(I) - 1 . 0 / A N

10 CONTINUE
C FIND THE LARGEST POSITIVE AND NEGATIVE DIFFERENCES
C AND THEIR POSITIONS IN ARRAY B

DO 50 I=I,N
C= 0.0
D= 0.0
DO 30 J=I,N

IF (B(J).GT.C) GO TO 20
C = B(J)
K = J
GO TO 30

20 IF (B (J). LT. D) GO TO 30
D = B(J)
L = J

30 CONTINUE
C TEST WHETHER THE SUB OF DIFFERENCES IN ARRAY B HAVE
C BECOME SIGNIFICANT.

SUM = 0.0
DO t$O M=I,N

SUn = SUM * ABS (B (M))
q0 CONTINUE

IF (SUM.LT. ERROR) GO TO 60
C ASSIGN THE ALIAS AND CUTOFF VALUES.

IA(K) = L
F(K) = 1.0 + C'AN
B(K) = 0.0
B(L) = C ÷ D

50 CONTINUE
C COMPUTATION OF ALIAS AND CUTOFF VALUES COMPLETE.
C NON RECONSTRUCT THE PROBABILITIES.

60 DO 80 I=I,N
P (I) = F (I) / A N
DO 70 J=I,N

IF (IA(J).EQ.I) P(I) = P(I) + (I.0-F(J))/AN
70 CONTINUE
80 CONTINUE

RETURN
END

Fig. 1. Subroutine for finding the alias and cutoff values for a given probabi l i ty d is t r ibut ion

ACM Transactions on Mathematical Software, Vol 3, No 3, September 1977.

An Efficient Method for Generating Discrete Random Varic~bles • 255

C A SUBROUTINE TO GENERATE INTEGER RANDOM
C VARIABLES WITH PRESCRIBED PROBABILITY
C DISTRIBUTION.
C ON ENTRY, UA AND UB ARE UNCORRELATED RANDOM
C VARIABLES UNIFORMLY DISTRIBUTED OVER (0,I)
C ARRAY'S IA AND F CONTAIN THE DESIRED ALIAS
C AND CUTOFF VALUES, RESPECTIVELY. N IS THE
C NUMBER OF VARIABLES IN THE DISTRIBUTION.
C ON EXIT, IX IS THE RETURNED RANDOM VARIABLE.

SUBROUTINE GETONE(UA, UB, IA, F, N, IX)
REAL F (N)
INTEGER IA(N)
AN = FLOAT(N)

C CONVERT U~ TO AN INTEGER VARIABLE
IX = INT(UA*AN) +

C COMPARE WITH T~E SELECTED CUTOFF.
IF (UB.GT.F(IX)) IX = IA(IX)
RETURN
END

Fig. 2. Subroutine for generating a sample IX with the required frequency distribution

I t is required to produce a random or pseudorandom integer Y whose probability
distribution is Pr (Y = 3) = PJ, 3 = 1 to n. We have available a random integer
X which is uniformly distributed over the range 1 to m, i.e. P r (X =j) = q = m-*.
The method requires tha t m = n. I t may be convenient to have m > n, i.e. to
have the range of X larger than that of Y, and in this case we redefine the range of
Y to be 1 to m by setting p~+, p m = 0.

The method consists of setting

~X with probability F(X)
Y = ~.A(X) with probability 1 - F(X)

where A (X) is an alias. The functions A (X) and F(X) are chosen according to
the algorithm shown in Figure 1 and ensure tha t P r (Y = j) = p~, j = 1 to n.

After the desired probability values have been entered into array E, the differ-
ences in magnitude between the desired distribution and the uniform distribution
are found and stored in array B. This array is searched for the largest negative and
positive differences, C and D, respectively, and their positions, K and L, respec-
tively. B(K) is then set to zero and B(L) is assigned the sum of C and D. I A (K)
is assigned the value of L and F(K) is the normalized value of C added to unity.

A confirmation of the method's working may be required. This consists of the
following operation. Find all values X = x~, x 2 , . . . , x~ such tha t j is an alias
of X,~. Then

Pr (Y = j) = [F, + ~-"~ I --

This operation is implemented at the end of the algorithm shown in Figure 1.
The reconstructed probabilities are stored in array P at the end of computation.

The practical implementation requires the generation of a pair (X, U) where
U is a continuous random variable which has a uniform probability distribution

ACM Transactions on Mathematical Software, Vol. 3, No. 3, September 1977.

256 • A.J. Walker

over the range (0, 1) and is independent of X. We then set

X if U < F (X)
Y = A (X) if U > F (X) .

A Fortran implementation of this procedure is given in Figure 2.

DISCUSSION

The method is considered to be particularly well suited for use in the small general
purpose computer with limited memory capacity because of the modest storage
requirements. Implementation is simple; only two random numbers, one discrete
and one continuous, at most two memory references, and a comparison are required
to produce a new sample with the required frequency distribution.

Where it is desired to generate discrete random variables from unbounded dis-
tributions, the method may be used to handle the bulk of the distribution and a
standard computational subroutine used to handle the tail.

Although it has been assumed tha t X is uniformly distributed, which is the most
common case, the method may be extended quite easily to cover any given dis-
tr ibution for X.

ACKNOWLEDGMENTS

The author is most grateful for the helpful comments and suggestions given by
Professor D.M. Hawkins, University of Witwatersrand, in the preparation of this
paper.

REFERENCES
1. MARSAGLIA, G. Generating discrete random variables in a computer. Comm. ACM 6, 1

(1963), 37-38.
2. RAMBERG, J.S., AND SCHMEISER, B.W An approximate method for generating symmetric

random variables Comm. ACM 15, 11 (Nov. 1972), 987-990.
3. SOBOLEWSKI, J.S , ANn PAYNE, W.H. Pseudo-noise with arbitrary amplitude distribution.

IEEE Trans. Compulers C-21 (1972), 337-345.
4. WALKER, A.J Fast generation of uniformly distributed pseudorandom numbers with

floating point representation. Eleclron. Lett. 10, 25/26 (1974), 553-554.
5. WALKER, A J. New fast method for generating discrete random numbers with arbitrary

frequency distributions. Electron. Lett 10, 8 (1974), 127-128.

Received April 1975

ACM Transactions on Mathematical Software, Vol 3, No 3, September 1977

