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The fast generation of discrete random variables with arbitrary frequency distributions is 
discussed. The proposed method is related to rejection techniques but differs from them in 
that all samples comprising the input data contribute to the samples in the target distribution. 
The software implementation of the method requires at most two memory references and a 
comparison. The method features good accuracy and modest storage requirements. I t  is par- 
ticularly useful in small computers with limited memory capacity. 
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INTRODUCTION 

Commonly used criteria [2, 3] for judging the performance of random number  
generators include speed, precision, memory  requirements, generality of the tech- 
nique, and ease of implementation.  The method proposed by  Marsaglia [1] has all 
these at tr ibutes but  must  be used with care in a computer  with limited memory  
capacity since the number  of memory  locations required for the storage of con- 
stants appears to be an order of magnitude greater than  the number  of variables 
to be generated. In  comparison, the number  of memory  locations required for the 
storage of constants by  the method proposed in this contribution is only twice the 
number  of variables used. There is no restriction on the other desirable features 
given above. 

These principles have already been used to advantage in the design and con- 
struction of a high-speed digital hardware-implemented pseudorandom number  
generator with an arbi t rary  discrete frequency distribution [5] and as a generator 
of uniformly distributed random variables with floating point representation [4]. 

M~HOD 

The new method is related to rejection techniques but  differs from them in tha t  all 
numbers  generated are used. A number  is either accepted or replaced with an 
"al ias" number.  
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C SUBROUTINE TO COMPUTE THE ALIAS AND CUTOFF VALUES 
C FOR THE DESIRED PROBABILITY DISTRIBUTION. 
C ON ENTRY, ARRAY E CONTAINS ~HE DESIRED PROBABILITY 
C VALUES. N IS THE NUMBER OF VARIABLES IN THE 
C DISTRIBUTION. 
C ON EXIT, ARRAYIS IA AND F CONTAIN THE ALIAS AND 
C CUTOFF VALUES, RESPECTIVELY. ARRAY 9 CONTAINS 
C THE RECONSTRUCTED PROBABILITIES. 

SUBROUTINE ARBRAN(B, E, N, IA, F, P) 
REAL B(N), E(N), F(N), P(N) 
INTEGER IA(N) 
ERROR = .IE-5 
AN = FLOAT(N) 

C INITIALISE ARRAYIS IA,F,B 
DO 10 I=I,N 

IA (I) = I 
F(I) = o.0 
B ( I )  = E(I) - 1 . 0 / A N  

10 CONTINUE 
C FIND THE LARGEST POSITIVE AND NEGATIVE DIFFERENCES 
C AND THEIR POSITIONS IN ARRAY B 

DO 50 I=I,N 
C= 0.0 
D= 0.0 
DO 30 J=I,N 

IF (B(J).GT.C) GO TO 20 
C = B(J) 
K = J 
GO TO 30 

20 IF (B (J). LT. D) GO TO 30 
D = B(J) 
L = J 

30 CONTINUE 
C TEST WHETHER THE SUB OF DIFFERENCES IN ARRAY B HAVE 
C BECOME SIGNIFICANT. 

SUM = 0.0 
DO t$O M=I,N 

SUn = SUM * ABS ( B ( M ) )  
q0 CONTINUE 

IF (SUM.LT. ERROR) GO TO 60 
C ASSIGN THE ALIAS AND CUTOFF VALUES. 

IA(K) = L 
F(K) = 1.0 + C'AN 
B(K) = 0.0 
B(L) = C ÷ D 

50 CONTINUE 
C COMPUTATION OF ALIAS AND CUTOFF VALUES COMPLETE. 
C NON RECONSTRUCT THE PROBABILITIES. 

60 DO 80 I=I,N 
P ( I )  = F ( I ) / A N  
DO 70 J=I,N 

IF (IA(J).EQ.I) P(I) = P(I) + (I.0-F(J))/AN 
70 CONTINUE 
80 CONTINUE 

RETURN 
END 

Fig. 1. Subroutine for finding the alias and cutoff values for a given probabi l i ty  d is t r ibut ion 
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C A SUBROUTINE TO GENERATE INTEGER RANDOM 
C VARIABLES WITH PRESCRIBED PROBABILITY 
C DISTRIBUTION. 
C ON ENTRY, UA AND UB ARE UNCORRELATED RANDOM 
C VARIABLES UNIFORMLY DISTRIBUTED OVER (0,I) 
C ARRAY'S IA AND F CONTAIN THE DESIRED ALIAS 
C AND CUTOFF VALUES, RESPECTIVELY. N IS THE 
C NUMBER OF VARIABLES IN THE DISTRIBUTION. 
C ON EXIT, IX IS THE RETURNED RANDOM VARIABLE. 

SUBROUTINE GETONE(UA, UB, IA, F, N, IX) 
REAL F (N) 
INTEGER IA(N) 
AN = FLOAT(N) 

C CONVERT U~ TO AN INTEGER VARIABLE 
IX = INT(UA*AN) + 

C COMPARE WITH T~E SELECTED CUTOFF. 
IF (UB.GT.F(IX)) IX = IA(IX) 
RETURN 
END 

Fig. 2. Subroutine for generating a sample IX with the required frequency distribution 

I t  is required to produce a random or pseudorandom integer Y whose probability 
distribution is Pr  (Y = 3) = PJ,  3 = 1 to n. We have available a random integer 
X which is uniformly distributed over the range 1 to m, i.e. P r  (X  =j) = q = m-*. 
The method requires tha t  m = n. I t  may be convenient to have m > n, i.e. to 
have the range of X larger than that  of Y, and in this case we redefine the range of 
Y to be 1 to m by setting p~+, . . . .  p m =  0. 

The method consists of setting 

~X with probability F(X)  
Y = ~.A(X) with probability 1 - F(X)  

where A ( X )  is an alias. The functions A ( X )  and F(X)  are chosen according to 
the algorithm shown in Figure 1 and ensure tha t  P r  (Y = j )  = p~, j = 1 to n. 

After the desired probability values have been entered into array E, the differ- 
ences in magnitude between the desired distribution and the uniform distribution 
are found and stored in array B. This array is searched for the largest negative and 
positive differences, C and D, respectively, and their positions, K and L, respec- 
tively. B(K)  is then set to zero and B(L)  is assigned the sum of C and D. I A ( K )  
is assigned the value of L and F(K)  is the normalized value of C added to unity. 

A confirmation of the method's working may be required. This consists of the 
following operation. Find all values X = x~, x 2 , . . . ,  x~ such tha t  j is an alias 
of X,~. Then 

Pr ( Y  = j)  = [F,  + ~-"~ I -- 

This operation is implemented at  the end of the algorithm shown in Figure 1. 
The reconstructed probabilities are stored in array P at  the end of computation. 

The practical implementation requires the generation of a pair (X, U) where 
U is a continuous random variable which has a uniform probability distribution 
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over the range (0, 1) and is independent of X. We then set 

X if U < F ( X )  
Y =  A ( X )  if U >  F ( X ) .  

A Fortran implementation of this procedure is given in Figure 2. 

DISCUSSION 

The method is considered to be particularly well suited for use in the small general 
purpose computer with limited memory capacity because of the modest storage 
requirements. Implementation is simple; only two random numbers, one discrete 
and one continuous, at most two memory references, and a comparison are required 
to produce a new sample with the required frequency distribution. 

Where it is desired to generate discrete random variables from unbounded dis- 
tributions, the method may be used to handle the bulk of the distribution and a 
standard computational subroutine used to handle the tail. 

Although it has been assumed tha t  X is uniformly distributed, which is the most 
common case, the method may be extended quite easily to cover any given dis- 
tr ibution for X. 
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